$$ \def\CC{\bf C} \def\QQ{\bf Q} \def\RR{\bf R} \def\ZZ{\bf Z} \def\NN{\bf N} \def\Z{\mathbb{Z}} \def\R{\mathbb{R}} \def\T{\mathbb{T}} \def\bx{\boldsymbol{x}} \def\bn{\boldsymbol{n}} \def\bk{\boldsymbol{k}} \def\A{\mathcal{A}} \def\Lcal{\mathcal{L}} \def\Ucal{\mathcal{U}} \def\Vcal{\mathcal{V}} \def\Wcal{\mathcal{W}} \def\Pcal{\mathcal{P}} \def\Xcal{\mathcal{X}} \def\be{\mathbf{e}} $$

Rauzy induction of polygon partitions and toral $\Z^2$-rotations

Sébastien Labbé, CNRS, LaBRI, Université de Bordeaux

Conference Algebraic and Combinatorial Invariants of Subshifts and Tilings, CIRM, Marseille, January 13, 2021

These slides are available in 3 formats:

HELP for navigating in the HTML slides:

  • SPACE BAR = next slide,
  • SHIFT + SPACE = previous slide,
  • ESC = overview

Outline as 5 sections (disposed as columns of slides if viewed in html format):

  • 1 - Polyhedrons, Polyhedron partitions and PETs
  • 2 - Rauzy induction of PETs and of toral partitions
  • 3 - A particular partition $\Pcal_\Ucal$ of $\T^2$
  • 4 - Inducing the partition $\Pcal_\Ucal$ with respect to a toral $\Z^2$-rotation
  • 5 - Results

1 - Polyhedrons, Polyhedron partitions, PETs, symbolic representation

Computations (arithmetic, comparisons, etc.) are more efficient when performed in a number field like $\mathbb{Q}(\varphi)$ with $\varphi=(1+\sqrt{5})/2$.

In [1]:
z = polygen(QQ, 'z')
K.<phi> = NumberField(z**2-z-1, 'phi', embedding=RR(1.6)); K
Out[1]:
Number Field in phi with defining polynomial z^2 - z - 1 with phi = 1.618033988749895?
In [2]:
phi.n(digits=500)
Out[2]:
1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374847540880753868917521266338622235369317931800607667263544333890865959395829056383226613199282902678806752087668925017116962070322210432162695486262963136144381497587012203408058879544547492461856953648644492410443207713449470495658467885098743394422125448770664780915884607499887124007652170575179788341662562494075890697040002812104276217711177780531531714101170466659914669798731761356006708748071
In [3]:
phi^2 + phi^-10
Out[3]:
-54*phi + 90

Polyhedron in SageMath: from vertices

In [4]:
vertices = [(0,0), (1,0), (0,1), (1,1/phi), (1/phi,1)]
bottom = Polyhedron(vertices)
bottom
Out[4]:

Polyhedron in SageMath: from inequalities

Convention for inequalities: $7+2x_1-3x_2\geq 0$ is incoded as (7, 2, -3).

In [5]:
top = Polyhedron(ieqs=[(-1/phi-1,1,1), (1,-1,0), (1,0,-1)])
top.plot(xmin=0, ymin=0)
Out[5]:

Polyhedron partition

In [6]:
from slabbe import PolyhedronPartition
P = PolyhedronPartition([bottom, top])
P.plot()
Out[6]:

Shortcut: refine a partition by a hyperplane

In [7]:
square = Polyhedron([(0,0), (1,0), (0,1), (1,1)])
P = PolyhedronPartition([square])
P = P.refine_by_hyperplane([-1/phi-1,1,1])
P.plot()
Out[7]:

Polyhedron Exchange Transformation on $[0,1)^2\simeq\T^2$

In [8]:
from slabbe import PolyhedronExchangeTransformation as PET
lattice_base = matrix.column([(1,0), (0,1)])
T = PET.toral_translation(lattice_base, vector((phi^-2,0)))
In [9]:
def title(content, height=1.08, fontsize=10):
    return text(content, (.5, height), fontsize=fontsize)
t1 = title(r"domain partition of $T$", fontsize=10)
t2 = title(r"image partition of $T$", fontsize=10)
graphics_array([T.partition().plot()+t1, T.image_partition().plot()+t2]).show(figsize=5)
In [10]:
t = title(r"$T$", fontsize=20)
(T.plot()+t).show(figsize=4)

A toral $\Z^2$-rotation

A continuous $\Z^2$-action $\begin{array}{lcll} R_0:&\Z^2\times\T^2&\to&\T^2\\ & (\bn,\bx)&\mapsto&\bx+\varphi^{-2}\bn \bmod\Z^2 \end{array}$ can be written as a pair of commuting PETs.

In [11]:
R0e1 = PET.toral_translation(lattice_base, vector((phi^-2,0)))
R0e2 = PET.toral_translation(lattice_base, vector((0,phi^-2)))
In [12]:
t1 = title(r"$R_0^{e_1}$", fontsize=20)
t2 = title(r"$R_0^{e_2}$", fontsize=20)
graphics_array([R0e1.plot()+t1, R0e2.plot()+t2])
Out[12]:

Symbolic dynamical system

In [13]:
t1 = title(r"$R_0^{e_1}$", fontsize=15); t2 = title(r"$R_0^{e_2}$", fontsize=15); t3 = title(r"$\mathcal{P}$", fontsize=15)
graphics_array([R0e1.plot()+t1, R0e2.plot()+t2, P.plot()+t3])
Out[13]:
  • Let $(\T,\Z^2,R)$ be the dynamical system given by a $\Z^2$-rotation $R$ on $\T$.
  • For some finite set $\A$, a topological partition of $\T$ is a finite collection $\{P_a\}_{a\in\A}$ of disjoint open sets $P_a\subset\T$ such that $\T = \bigcup_{a\in\A} \overline{P_a}$.
  • If $S\subset\Z^2$ is a finite set, we say that a pattern $w\in\A^S$ of support $S$ is allowed for $\Pcal,R$ if $$ \bigcap_{\bk\in S} R^{-\bk}(P_{w_\bk}) \neq \varnothing. $$
  • Let $\Lcal_{\Pcal,R}$ be the collection of all allowed patterns for $\Pcal,R$. The set $\Lcal_{\Pcal,R}$ is the language of the symbolic dynamical system corresponding to $\Pcal,R$, i.e., the subshift $\Xcal_{\Pcal,R}\subseteq\A^{\Z^2}$ defined as $$ \Xcal_{\Pcal,R} = \{x\in\A^{\Z^2} \mid \pi_S\circ\sigma^\bn(x)\in\Lcal_{\Pcal,R} \text{ for every } \bn\in\Z^2 \text{ and finite subset } S\subset\Z^2\}, $$ see Prop. 9.2.4 in the chapter Hochman 2016.

2 - Rauzy induction of a PET and of a partition

Recall that the first return map $\widehat{T}|_W$ of a dynamical system $(X,T)$ maps a point $\bx\in W\subset X$ to the first point in the forward orbit of $T$ lying in $W$, i.e. $$ \widehat{T}|_W(\bx) = T^{r(\bx)}(\bx) \quad\text{ where } r(\bx) = \min\{k\in\Z_{>0} : T^k(\bx)\in W\}. $$

Facts:

  • From Poincaré's recurrence theorem, if $\mu$ is a finite $T$-invariant measure on $X$, then the first return map $\widehat{T}|_W$ is well defined for $\mu$-almost all $\bx\in W$.
  • Moreover if $T$ is a PET and $W$ is a polyhedron, then the first return map $\widehat{T}|_W$ is a PET.
  • If $\Pcal$ is a partition of $X$, then there exists a substitution $\beta$ and an induced partition $\widehat{\Pcal}|_W$ such that $\Xcal_{\Pcal,T}=\overline{\beta\left(\Xcal_{\widehat{\Pcal}|_W,\widehat{T}|_W}\right)}^\sigma$.
  • If $W$ is the intersection of the domain with a half-space, then there is a nice algorithm to compute $\widehat{\Pcal}|_W$, $\widehat{T}|_W$ and $\beta$, see arXiv:1906.01104.

Helper function please_draw_Rauzy_induction

This is some code to draw induced transformation on the next slide (you may safely ignore what is below).

In [14]:
bb = point([(0,0), (1,1)], color='white') ### hack to make all plots to have the same bounding box
def please_draw_Rauzy_induction(T, P, inducedT, inducedP, beta, figsize=9):
    t1 = title(r'transformation $T$', fontsize=15)
    t2 = title(r'partition $\mathcal{P}$', fontsize=15)
    t3 = title(r'induced transformation $\widehat{T}|_W$', fontsize=15)
    t4 = title(r'induced partition $\widehat{\mathcal{P}}|_W$', fontsize=15)
    graphics_array([T.plot()+bb+t1, P.plot()+bb+t2,
                    inducedT.plot()+bb+t3, 
                    inducedP.plot()+bb+t4], ncols=2).show(figsize=figsize)
    show(LatexExpr(r"\text{The induced substitution is }"+
                   r"\beta:{}".format(latex(beta))))

Rauzy induction on subdomain $W$: $\Xcal_{\Pcal,T}=\overline{\beta\left(\Xcal_{\widehat{\Pcal}|_W,\widehat{T}|_W}\right)}^\sigma$

In [15]:
x_ineq = [phi^-1, -1, 0] ### x <= phi^-1
inducedT,beta = T.induced_transformation(x_ineq)
please_draw_Rauzy_induction(T, T.partition(), inducedT,  inducedT.partition(), WordMorphism(beta))

Rauzy induction on subdomain $W$: $\Xcal_{\Pcal,T}=\overline{\beta\left(\Xcal_{\widehat{\Pcal}|_W,\widehat{T}|_W}\right)}^\sigma$ for any partition $\Pcal$

In [16]:
x_ineq = [phi^-1, -1, 0] ### x <= phi^-1
inducedT,_ = T.induced_transformation(x_ineq)
inducedP,beta = T.induced_partition(x_ineq, P, substitution_type='row')
please_draw_Rauzy_induction(T, P, inducedT, inducedP, beta)

Rauzy induction on general subdomain $W$: $\Xcal_{\Pcal,T}=\overline{\beta\left(\Xcal_{\widehat{\Pcal}|_W,\widehat{T}|_W}\right)}^\sigma$ for any partition $\Pcal$

Of course, for general subdomain $W$, the induced transformation $\widehat{T}|_W$ of a toral rotation $T$ is not a toral rotation. Today, the induced transformations are toral rotations, so they commute between themselves.

In [17]:
x_ineq = [phi^-1+1/10, -1, 0-1/5]
inducedT,_ = T.induced_transformation(x_ineq)
inducedP,beta = T.induced_partition(x_ineq, P, substitution_type='row')
please_draw_Rauzy_induction(T, P, inducedT, inducedP, beta)

3 - A particular partition $\Pcal_\Ucal$ of $\T^2$

The polygon partition $P_a$:

In [18]:
square = Polyhedron([(0,0), (1,0), (0,1), (1,1)])
Pa = PolyhedronPartition([square])
Pa = Pa.refine_by_hyperplane([-1/phi, 0, 1])
Pa.plot()
Out[18]:

The polygon partition $P_b$:

In [19]:
Pb = PolyhedronPartition([square])
Pb = Pb.refine_by_hyperplane([-1/phi, 1, 0])
Pb = Pb.refine_by_hyperplane([-1/phi^2, 1, 0])
Pb.plot()
Out[19]:

The polygon partition $P_c$:

In [20]:
Pc = PolyhedronPartition([square])
Pc = Pc.refine_by_hyperplane([-1,1,1])
Pc = Pc.refine_by_hyperplane([-1/phi^2,1,1])
Pc = Pc.refine_by_hyperplane([-1/phi^2-1,1,1])
Pc.plot()
Out[20]:

The polygon partition $P_d$:

In [21]:
Pd = PolyhedronPartition([square])
Pd = Pd.refine_by_hyperplane([-1,phi,1])
Pd = Pd.refine_by_hyperplane([-1/phi,phi,1])
Pd = Pd.refine_by_hyperplane([-1/phi-1,phi,1])
Pd.plot()
Out[21]:

The polygon partitions $P_a$, $P_b$, $P_c$, $P_d$ and their refinement:

In [22]:
graphics_array([Pa.plot(), Pb.plot(), Pc.plot(), Pd.plot()]).show(figsize=8)
In [23]:
Pa.refinement(Pb).refinement(Pc).refinement(Pd).plot()
Out[23]:

The partition $\Pcal_\Ucal$ using the labelling defined in arXiv:1903.06137

In [24]:
from slabbe.arXiv_1903_06137 import self_similar_19_atoms_partition
P0 = PU = self_similar_19_atoms_partition()
P0.plot()
Out[24]:

4 - Inducing the partition $\Pcal_\Ucal$ with respect to a toral $\Z^2$-rotation

A continuous $\Z^2$-action $R_0$ on $\T^2$: $\begin{array}{lcll} R_0:&\Z^2\times\T^2&\to&\T^2\\ & (\bn,\bx)&\mapsto&\bx+\varphi^{-2}\bn \bmod\Z^2 \end{array}$

In [25]:
lattice_base = matrix.column([(1,0), (0,1)])
R0e1 = PET.toral_translation(lattice_base, vector((phi^-2,0)))
R0e2 = PET.toral_translation(lattice_base, vector((0,phi^-2)))
In [26]:
t1 = title(r"$R_0^{e_1}$", fontsize=20)
t2 = title(r"$R_0^{e_2}$", fontsize=20)
graphics_array([R0e1.plot()+t1, R0e2.plot()+t2])
Out[26]:

Helper function please_draw_Rauzy_induction_for_Z2_action

This is some code to draw induced transformation on the next slide (you may safely ignore what is below).

In [27]:
def please_draw_Rauzy_induction_for_Z2_action(T1, T2, P, inducedT1, inducedT2, inducedP, beta, 
                                                         subscripts=['',''],figsize=9, fontsize=15):
    input_subscript, output_subscript= subscripts
    t1 = title(r'$R^{e_1}%s$'%input_subscript, fontsize=fontsize)
    t2 = title(r'$R^{e_2}%s$'%input_subscript, fontsize=fontsize)
    t3 = title(r'$\mathcal{P}%s$'%input_subscript, fontsize=fontsize)
    t4 = title(r'$R^{e_1}%s:=\widehat{R^{e_1}%s}|_W$'%(output_subscript, input_subscript), fontsize=fontsize)
    t5 = title(r'$R^{e_1}%s:=\widehat{R^{e_2}%s}|_W$'%(output_subscript, input_subscript), fontsize=fontsize)
    t6 = title(r'$\mathcal{P}%s:=\widehat{\mathcal{P}%s}|_W$'%(output_subscript, input_subscript), fontsize=fontsize)
    graphics_array([T1.plot()+bb+t1, T2.plot()+bb+t2, P.plot()+bb+t3,
                    inducedT1.plot()+bb+t4, 
                    inducedT2.plot()+bb+t5, 
                    inducedP.plot()+bb+t6], ncols=3).show(figsize=figsize)
    show(LatexExpr(r"\text{The substitution is }"+
                   r"\beta{}:{}".format(input_subscript, latex(beta))))

Vertical Rauzy induction $\Xcal_{\Pcal_{0},R_{0}}=\overline{\beta_0\left(\Xcal_{\Pcal_{1},R_{1}}\right)}^\sigma$

In [28]:
y_ineq = [phi^-1, 0, -1] ###   <= phi^-1 (see Polyhedron? for syntax)
R1e1,_ = R0e1.induced_transformation(y_ineq)
R1e2,_ = R0e2.induced_transformation(y_ineq)
P1,beta0 = R0e2.induced_partition(y_ineq, P0, substitution_type='column')
please_draw_Rauzy_induction_for_Z2_action(R0e1, R0e2, PU, R1e1, R1e2, P1, beta0, subscripts=[r'_0','_1'], figsize=8)  

Horizontal Rauzy induction $\Xcal_{\Pcal_{1},R_{1}}=\overline{\beta_1\left(\Xcal_{\Pcal_{2},R_{2}}\right)}^\sigma$

In [29]:
x_ineq = [phi^-1, -1, 0] ### x <= phi^-1 (see Polyhedron? for syntax)
R2e1,_ = R1e1.induced_transformation(x_ineq)
R2e2,_ = R1e2.induced_transformation(x_ineq)
P2,beta1 = R1e1.induced_partition(x_ineq, P1, substitution_type='row')
please_draw_Rauzy_induction_for_Z2_action(R1e1, R1e2, P1, R2e1, R2e2, P2, beta1, subscripts=[r'_1','_2'], figsize=8)

Renormalization $\Xcal_{\Pcal_{2},R_{2}}=\Xcal_{\Pcal_{2'},R_{2'}}$

In [30]:
R2e1_scaled = (-phi*R2e1).translate_domain((1,1))
R2e2_scaled = (-phi*R2e2).translate_domain((1,1))
P2_scaled = (-phi*P2).translate((1,1))
In [31]:
t1 = title(r"$R^{e_1}_{2}$", fontsize=15);t2 = title(r"$R^{e_2}_{2}$", fontsize=15);t3 = title(r"$\mathcal{P}_{2}$", fontsize=15)
t4 = title(r"$R^{e_1}_{2'}$", fontsize=15);t5 = title(r"$R^{e_2}_{2'}$", fontsize=15);t6 = title(r"$\mathcal{P}_{2'}$", fontsize=15)
graphics_array([R2e1.plot()+bb+t1, R2e2.plot()+bb+t2, P2.plot()+bb+t3,
                R2e1_scaled.plot()+t4, R2e2_scaled.plot()+t5, P2_scaled.plot()+t6], ncols=3).show(figsize=9)

Back to the starting partition $\Pcal_0$

We observe that the scaled partition $\Pcal_{2'}$ is the same as $\Pcal_0$ up to a permutation $\beta_2$ of the indices of the atoms in such a way that $\Xcal_{\Pcal_{2'},R_{2'}}=\beta_2\left(\Xcal_{\Pcal_0,R_0}\right)$

In [32]:
t1 = title(r'$\mathcal{P}_0$', fontsize=20);t2 = title(r'$\mathcal{P}_1$', fontsize=20)
t3 = title(r'$\mathcal{P}_2$', fontsize=20);t4 = title(r"$\mathcal{P}_{2'}$", fontsize=20)
L = [PU.plot()+t1, P1.plot()+bb+t2, P2.plot()+bb+t3, P2_scaled.plot()+t4, PU.plot()+t1]
graphics_array(L).show(figsize=15)
In [33]:
assert P2_scaled.is_equal_up_to_relabeling(PU)
from slabbe import Substitution2d
beta2 = Substitution2d.from_permutation(PU.keys_permutation(P2_scaled))
show(beta2)

The self-similarity

In summary, we have

$$\begin{align*} \Xcal_{\Pcal_0,R_0} &= \overline{\beta_0(\Xcal_{\Pcal_1,R_1})}^\sigma = \overline{\beta_0\beta_1(\Xcal_{\Pcal_2,R_2})}^\sigma = \overline{\beta_0\beta_1(\Xcal_{\Pcal_{2'},R_{2'}})}^\sigma = \overline{\beta_0\beta_1\beta_2\left(\Xcal_{\Pcal_0,R_0}\right)}^\sigma \end{align*}$$

with self-similarity $\phi=\beta_0\beta_1\beta_2$:

In [34]:
phi_ = beta0 * beta1 * beta2
show(phi_)

Moreover, one can prove (from the study of $2\times 2$ factors) that there is a unique subshift $X$ such that $X=\overline{\phi(X)}^\sigma$. Thus $$\Xcal_{\Pcal_0,R_0}=\Xcal_\phi.$$ Also $\phi$ is onto up to a shift and recognizable. Thus $\Xcal_\phi$ is aperiodic.

5 - Results

Another characterization of $\Xcal_{\Pcal_0,R_0}$ is the Wang shift $\Omega_\Ucal\subseteq[0,18]^{\mathbb{Z}^2}$ defined by a set $\Ucal$ of 19 Wang tiles.

In [35]:
from slabbe import WangTileSet
tiles = ["FOJO", "FOHL", "JMFP", "DMFK", "HPJP", "HPHN", "HKFP", "HKDP", 
         "BOIO", "GLEO", "GLCL", "ALIO", "EPGP", "EPIP", "IPGK", "IPIK",
         "IKBM", "IKAK", "CNIP"]
U = WangTileSet([tuple(tile) for tile in tiles])
U.tikz()
Out[35]:

which satisfies: $$\Omega_\Ucal =\overline{\alpha_0(\Omega_\Vcal)}^\sigma =\overline{\alpha_0\alpha_1(\Omega_\Wcal)}^\sigma =\overline{\alpha_0\alpha_1\alpha_2(\Omega_\Ucal)}^\sigma =\overline{\phi(\Omega_\Ucal)}^\sigma$$ and $$\beta_0=\alpha_0,\quad\beta_1=\alpha_1,\quad\quad\beta_2=\alpha_2.$$

The computation of $\alpha_0$, $\alpha_1$ and $\alpha_2$ is done using subset of marker tiles, see this other 30 minutes talk (online SDA2 meeting, Caen, December 2020) or this chapter arXiv:2012.03892

$\Pcal_\Ucal$ is a Markov partition for $\Z^2$-action $R_\Ucal$ on $\T^2$

Theorem

  • (i) $\Xcal_{\Pcal_\Ucal,R_\Ucal}$ is minimal and aperiodic, and $\Xcal_{\Pcal_\Ucal,R_\Ucal}=\Xcal_\phi= \Omega_\Ucal$,
  • (ii) $\Pcal_\Ucal$ is a Markov partition for the dynamical system $(\T^2,\Z^2,R_\Ucal)$,
  • (iii) $(\T^2,\Z^2,R_\Ucal)$ is the maximal equicontinuous factor of $(\Omega_\Ucal,\Z^2,\sigma)$,
  • (iv) the set of fiber cardinalities of the factor map $\Omega_\Ucal\to\T^2$ is $\{1,2,8\}$,
  • (v) the dynamical system $(\Omega_\Ucal,\Z^2,\sigma)$ is strictly ergodic and the measure-preserving dynamical system $(\Omega_\Ucal,\Z^2,\sigma,\nu)$ is isomorphic to $(\T^2,\Z^2,R_\Ucal,\lambda)$ where $\nu$ is the unique shift-invariant probability measure on $\Omega_\Ucal$ and $\lambda$ is the Haar measure on $\T^2$.

Theorem There exists a 4-to-2 cut and project scheme such that for every configuration $w\in\Omega_\Ucal$, the set $Q\subseteq\Z^2$ of occurrences of a pattern in $w$ is a regular model set. If $w$ is a generic (resp. singular) configuration, then $Q$ is a generic (resp. singular) model set.

Both $\Xcal_{\Pcal_\Ucal, R_\Ucal}$ and $\Omega_\Ucal$ come from the description of the Jeandel-Rao Wang shift

In [36]:
from slabbe import TikzPicture
with open('figure4.tex','r') as f: 
    s = f.read()
TikzPicture(s)
Out[36]:
  • A self-similar aperiodic set of 19 Wang tiles, Geometriae Dedicata 201 (2019) 81-109, doi, arXiv:1802.03265
  • Substitutive structure of Jeandel-Rao aperiodic tilings. Discrete Comput. Geom., 2019, doi, arXiv:1808.07768
  • Markov partitions for toral $\mathbb{Z}^2$-rotations featuring Jeandel-Rao Wang shift and model sets. April 2020. to appear in Annales Henri Lebesgue. arXiv:1903.06137v3
  • Rauzy induction of polygon partitions and toral $\mathbb{Z}^2$-rotations, last update January 2021, arXiv:1906.01104v3
  • Chapter: Three characterizations of a self-similar aperiodic 2-dimensional subshift, Dec 2020, arXiv:2012.03892

Code

Installation:

sage -pip install slabbe

In case of trouble: email me.

In [ ]: