Numeration systems for aperiodic Wang tilings

Sébastien Labbé[†] joint work with Jana Lepšová[†]*

[†] CNRS, Université de Bordeaux Laboratoire Bordelais de Recherche en Informatique (LaBRI) * Czech Technical University in Prague

> Numeration 2024 Utrecht University (Netherlands) 3-7 Jun 2024

Outline

4 Dumont–Thomas complement num. systems for \mathbb{Z} and \mathbb{Z}^d

Outline

1 Motivation

- 2 Kari/Culik, Jeandel–Rao, Ammann sets of Wang tiles
- **3** A Fibonacci analog of two's complement numeration system
- ${\color{black} 4}$ Dumont–Thomas complement num. systems for ${\mathbb Z}$ and ${\mathbb Z}^d$
- Open questions

Wang tiles

PROVING THEOREMS BY PATTERN RECOGNITION - 11

Then we can easily find an infinite solution by the following argument. The following configuration satisfies the constraint on the edges:

$$\begin{array}{cccc} A & B & C \\ C & A & B \\ B & C & A \end{array}$$

Now the colors on the periphery of the above block are seen to be the following:

Wang's original question : is it true that a set of Wang tiles tile the plane if and only if there exists such a cyclic rectangle?

H. Wang. Proving theorems by pattern recognition – II. Bell System Technical Journal, 40(1):1–41, January 1961. doi:10.1002/j.1538-7305.1961.tb03975.x

23

Aperiodic Wang tile sets

- 1966 (Berger) : 20426 tiles (lowered down later to 104)
- 1968 (Knuth) : 92 tiles
- 1971 (Robinson) : 56 tiles
- 1971 (Ammann) : 16 tiles
- 1987 (Grunbaum) : 24 tiles
- 1996 (Kari and Culik) : 14 tiles and 13 tiles
- 2015 (Jeandel, Rao) : 11 tiles

Theorem (Jeandel, Rao, 2015)

All sets of \leq 10 Wang tiles are **periodic** or **don't tile** the plane.

Emmanuel Jeandel and Michaël Rao. An aperiodic set of 11 Wang tiles. Adv. Comb. **37** (2021) Id/No 1.

Books

- Tilings and Patterns, by Grünbaum & Shephard, 1987
- Quasicrystals and Geometry, Senechal, 1995
- Pytheas Fogg's book, 2002
- Aperiodic Order, Baake & Grimm, 2013

Small aperiodic sets and Numeration systems

Given : a small aperiodic set T of Wang tiles

$\begin{bmatrix} 4\\2\\1 \end{bmatrix} \begin{bmatrix} 2\\2\\0 \end{bmatrix} \begin{bmatrix} 3\\1\\1 \end{bmatrix}$	$\begin{bmatrix} 2\\3\\2 \end{bmatrix} 1$	$\begin{bmatrix}1\\3&3\\3\end{bmatrix}$	$\begin{bmatrix} 1\\ 3 & 0\\ 1 \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$egin{array}{c} 0 \\ 0 & 0 \\ 1 \end{array}$	$\begin{bmatrix}1\\0&3\\2\end{bmatrix}$	$\begin{bmatrix} 2\\1\\2 \end{bmatrix} 0$	$\begin{bmatrix} 2\\1&1\\4\end{bmatrix}$	$\begin{bmatrix} 3\\1&3\\2\end{bmatrix}$
---	---	---	--	--	---	---	--	--

Objective : Construct a valid configuration $\mathbb{Z}^2 \to \mathcal{T}$

$\begin{bmatrix}1\\3&0\\1\end{bmatrix}$	$\begin{smallmatrix}&1\\0&&3\\&2\end{smallmatrix}$	$\begin{smallmatrix}&1\\3&&0\\&1\end{smallmatrix}$	$\begin{smallmatrix}&0\\0&&0\\&1\end{smallmatrix}$	$\begin{smallmatrix}&0\\0&&0\\&1\end{smallmatrix}$												
$\begin{smallmatrix}&1\\3&&1\\&1\end{smallmatrix}$	$\begin{smallmatrix}&2\\1&&0\\&2\end{smallmatrix}$	$\begin{smallmatrix}&1\\0&&3\\&2\end{smallmatrix}$	$\begin{smallmatrix}&1\\3&&0\\&1\end{smallmatrix}$	$\begin{smallmatrix}&1\\0&&3\\&2\end{smallmatrix}$												
$\begin{smallmatrix}&1\\0&&3\\&2\end{smallmatrix}$	$\begin{smallmatrix}&2\\3&&1\\&2\end{smallmatrix}$	$\begin{smallmatrix}&2\\1&&0\\&2\end{smallmatrix}$	$\begin{smallmatrix}&1\\0&&3\\&2\end{smallmatrix}$	$3 \frac{2}{2} 1$	$\begin{smallmatrix}&2\\1&&0\\&2\end{smallmatrix}$	$\begin{smallmatrix}&1\\0&&3\\&2\end{smallmatrix}$	$\begin{smallmatrix}&2\\3&&1\\&2\end{smallmatrix}$									
$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 0 \\ 0 \end{array} 2$	$\begin{smallmatrix}&2\\2&&2\\0\end{smallmatrix}$	$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 0 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$\begin{smallmatrix}&2\\2&&2\\&0\end{smallmatrix}$	$2 \begin{array}{c} 2 \\ 0 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 0 \\ 0 \end{array} 2$	$2 \begin{array}{c} 2 \\ 2 \\ 0 \end{array} 2$	$\begin{smallmatrix}&2\\2&&2\\0\end{smallmatrix}$
$\begin{smallmatrix}&0\\0&&0\\&1\end{smallmatrix}$																

Today's question

Can **numeration systems** help us to decide which tile is at position $(n_1, n_2) \in \mathbb{Z}^2$?

Outline

Motivation

Kari/Culik, Jeandel–Rao, Ammann sets of Wang tiles

3 A Fibonacci analog of two's complement numeration system

${\color{black} 4}$ Dumont–Thomas complement num. systems for ${\mathbb Z}$ and ${\mathbb Z}^d$

Open questions

Balanced representation of a real number

The **balanced representation of a real number** $x \in \mathbb{R}$ is the bi-infinite sequence $B(x) \in \{\lfloor x \rfloor, \lceil x \rceil\}^{\mathbb{Z}}$ where

 $B(x)_i = \lfloor ix \rfloor - \lfloor (i-1)x \rfloor.$

Note : $x \in \mathbb{R} \setminus \mathbb{Q}$ if and only if B(x) is a Sturmian sequence.

Lemma (Kari, 2016)

For every $q \in \mathbb{Q}_{>0}$ and every $x \in \mathbb{R}$, the sequence $\{t_{i,x}\}_{i \in \mathbb{Z}}$

$$q\lfloor (i-1)x \rfloor - \lfloor q(i-1)x \rfloor \begin{bmatrix} B(x)_i \\ t_{i,x} \end{bmatrix} q\lfloor ix \rfloor - \lfloor qix \rfloor$$
$$B(qx)_i$$

is a valid tiling of a horizontal strip by the Wang tiles $t_{i,x}$.

$$\overbrace{\bigcirc 1^{-1}}^{\times} \overbrace{\bigcirc 1^{-1}}^{\times} \overbrace{\bigcirc 0^{-1}}^{\times} \overbrace{\bigcirc 1^{-1}}^{\times} \overbrace{\bigcirc 0^{-1}}^{\times} \overbrace{\bigcirc 1^{-1}}^{\times} \overbrace{\bigcirc 0^{-1}}^{\times} \overbrace{\bigcirc 1^{-1}}^{\times} \overbrace{\frown 1^{-1}}^{\ast} \overbrace{\frown 1^{-1}}^$$

Kari and Culik sets of Wang tiles

Lemma (Kari, 2016)

For every $q \in \mathbb{Q}_{>0}$ and every $a, b \in \mathbb{Z}$,

$$T_{q,a,b} = \{t_{i,x} \mid i \in \mathbb{Z}, x \in [a, a+1], qx \in [b, b+1]\}$$

is a **finite set** of Wang tiles.

Kari's aperiodic set of 14 tiles is $T_{2,0,1} \cup T_{\frac{2}{3},1,1} \cup T_{\frac{2}{3},1,0}$. The proof of existence of tilings **involves balanced representations** of $x \in [\frac{2}{3}, 2]$ and the invertible map

$$x \mapsto \begin{cases} 2x & \text{if } x \leq 1, \\ rac{2}{3}x & \text{otherwise.} \end{cases}$$

Culik's aperiodic set of 13 Wang tiles is similar.

Jarkko Kari. Piecewise affine functions, Sturmian sequences and Wang tiles. Fundam. Inform., 145(3) :257–277, 2016.

Kari set of 14 Wang tiles & a tiling

$\frac{1}{1}, \frac{2}{3}$	$^{0,1}_{0,1}$	$^{2}_{1}^{0}_{0}^{0}_{1}^{0}_{1}$	$^{0,1}_{0,1}$	$^{2}_{1}^{0}_{0}^{0}_{1}^{0}_{1}$	$^{0,1}_{0,1}$	$^{2}_{1}^{0}_{0}^{0}_{1}^{0}_{1}$	$^{0,1}_{0,1}$	$\frac{0/3}{-1/3}$	$^{2^{2}}_{0,3}$	$^{2}_{1}^{0}_{1}^{0}_{1}$	$^{1/3}_{0/3}$
$\overrightarrow{}_{2}^{1}$		$\frac{1}{7}$				$\frac{1}{7}$				$\frac{1}{7}$	$\overrightarrow{}_{1}^{1}$
$\frac{5}{2}, \frac{2}{1}, \frac{2}{1}, \frac{2}{3}$	$\frac{2}{2}$	$\mathbb{S}_{1/3}^{0/3}$	$\frac{2^{2}}{1^{2}}$	$0^{-1/3}$	$\frac{\varepsilon_{0,3}^{0}}{1}$	$\frac{2}{1/3}$	$^{0/3}_{0/3}$	$\frac{\varepsilon_{0,3}^{0}}{1}$	$\frac{1}{3}$	$^{2}_{0/3}^{2}^{-1}_{-1}$	$^{0/3}_{-1/3}$
$\frac{0/3}{-1/3}$	$\frac{2}{1}$	$\frac{1}{-1}$	$^{2}_{0,3}^{2}_{-1,3}$	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{2}{1}$	$\frac{1}{1}$	$\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{0$	$\overset{\mathfrak{s}^2\mathfrak{s}}{\overset{0}{\overset{0}{\overset{1}{\overset{1}{}}}}}$	$\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{0$	$^{0/3}_{-1/3}$
$\begin{bmatrix} 1\\ 2\\ 2 \end{bmatrix}$	$\frac{1}{2}$	$\frac{1}{2}$	$\begin{bmatrix} 1\\ -2\\ 2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} 0$	$0 \frac{0}{1}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} 0$
$\frac{2}{100} \frac{1}{100}$	$\frac{2^{2}}{1^{-1}}$	$\frac{2}{1}$	$\frac{\infty^2 \infty}{1^0}$	$\overset{1}{\overset{0}{\overset{1}{\overset{1}{}}}}$	$^{10/3}_{-1/3}$	$\frac{2}{1}$	$\tilde{\mathfrak{r}}_{0}^{2}$	$\frac{5}{2}$	≈ ² ≈ ≈2°0	$\tilde{\mathfrak{r}}_{1}^{2}$	$\begin{array}{c} 1/3\\ 0/3 \end{array}$
$\frac{0}{1}$	$\frac{2}{100}$	$\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{\overset{1}{\overset{0}{0$	^{بر 1} رو م	$\frac{1}{1}^{3}$	$^{0,1}_{0,1}$	°000	$\frac{1}{1}$	$^{0,1}_{0,1}$	$\frac{2}{1}$	$\frac{1}{3}$	$\frac{0}{1}$

Markov partitions for toral Z²-rotations featuring Jeandel-Rao Wang shift and model sets. Ann. H. Lebesgue 4 (2021) 283–324. doi:10.5802/ahl.73
 Rauzy induction of polygon partitions and toral Z²-rotations.
 J. Mod. Dyn. 17 (2021) 481–528. doi:10.3934/jmd.2021017
 Substitutive structure of Jeandel-Rao aperiodic tilings.
 Discrete Comput. Geom., 65 (2021) 800–855. doi:10.1007/s00454-019-00153-3

Open question. Jeandel–Rao is not alone : characterize the family.

Ammann A2 encoded into 16 Wang tiles

Two shapes belonging to the Ammann A2 family :

(dashed and solid lines in the interior of the tiles must continue straight across the edges of the tiling)

Cutting the solid Ammann bars of a tiling yields parallelograms which can be encoded into 16 Wang tiles :

$$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 4 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 3 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix} \end{bmatrix} \begin{bmatrix}$$

Branko Grünbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman and Company, New York, 1987.

Ammann 16 Wang tiles

Ammann tiles (p.595)

16 equivalent supertiles (p.597)

Figure 11.1.13

Seanko Grünbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman and Company, New York, 1987.

Ammann 16 Wang tiles & unique decomposition

Branko Grünbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman and Company, New York, 1987.

Symbolic 2-dimensional substitution

Encoding each Ammann tile by the indices from the set $\textit{A} = \{0, 1, \dots, 15\}$

we obtain a 2-dimensional substitution $\phi: \mathbf{A} \rightarrow {\mathbf{A^*}^2}$:

$$\phi: \begin{cases} 0 \mapsto (2), & 1 \mapsto \begin{pmatrix} 12 \ 0 \\ 3 \ 9 \end{pmatrix}, 2 \mapsto \begin{pmatrix} 14 \ 0 \\ 3 \ 11 \end{pmatrix}, 3 \mapsto \begin{pmatrix} 13 \ 0 \\ 1 \ 8 \end{pmatrix}, \\ 4 \mapsto \begin{pmatrix} 12 \ 0 \\ 3 \ 11 \end{pmatrix}, 5 \mapsto \begin{pmatrix} 12 \ 0 \\ 7 \ 8 \end{pmatrix}, 6 \mapsto \begin{pmatrix} 14 \ 0 \\ 3 \ 9 \end{pmatrix}, 7 \mapsto \begin{pmatrix} 13 \ 0 \\ 5 \ 9 \end{pmatrix}, \\ 8 \mapsto \begin{pmatrix} 13 \\ 1 \end{pmatrix}, 9 \mapsto \begin{pmatrix} 15 \\ 6 \end{pmatrix}, 10 \mapsto \begin{pmatrix} 12 \\ 7 \end{pmatrix}, 11 \mapsto \begin{pmatrix} 15 \\ 2 \end{pmatrix}, \\ 12 \mapsto (4, 10), 13 \mapsto (1, 8), 14 \mapsto (2, 10), 15 \mapsto (5, 9). \end{cases}$$

Shahar Mozes. Tilings, substitution systems and dynamical systems generated by them. J. Analyse Math., 53 :139–186, 1989.

A configuration over \mathbb{N}^2

Applying the substitution ϕ on seed 1 produces two configurations

of the first quadrant \mathbb{N}^2 which are the **periodic points** $x = \phi^2(x)$ = $\lim_{k \to +\infty} \phi^{2k}(a)$ of period 2 starting from the **seeds** a = 1 or a = 3.

Theorem (E. Charlier, T. Kärki, M. Rigo, 2010)

The 2-dimensional infinite word $x \in \mathcal{B}^{\mathbb{N}^2}$ is the image under a coding of a shape-symmetric pure morphic word if and only if it is S-automatic for some **abstract numeration system** $S = (L, \Sigma, <)$ with $\varepsilon \in L$.

What about the other quadrants?

Outline

Motivation

2 Kari/Culik, Jeandel–Rao, Ammann sets of Wang tiles

3 A Fibonacci analog of two's complement numeration system

${\color{black} 4}$ Dumont–Thomas complement num. systems for ${\mathbb Z}$ and ${\mathbb Z}^d$

Open questions

Negative p-adic integers

On a finite size memory representing unsigned integers with base-10 digits, incrementing by 1 the largest representable number gives

In the ten's complement NS, value -1 is represented by $999 \cdots 9$:

D. E. Knuth. The art of computer programming. Vol. 2. Addison-Wesley, Reading, MA, 1998. Seminumerical algorithms, Third edition. Likewise

$$\frac{\dots + 2^4 + 2^3 + 2^2 + 2^1 + 2^0}{10} \qquad \frac{\dots + 55 + 21 + 8 + 3 + 1}{10} = \frac{11}{10}$$

Two's complement

Let $\Sigma = \{0, 1\}$. Let $w = w_{k-1} \cdots w_0 \in \Sigma^*$ for some $k \in \mathbb{N}$. $\operatorname{val}_2(w) = \sum_{i=0}^{k-1} w_i 2^i \quad \operatorname{val}_{2c}(w) = \operatorname{val}_2(w) - w_{k-1} 2^k$.

n	$rep_2(n)$	rep _{2c} (<i>n</i>)
8	001000	0001000
7	000111	<mark>000</mark> 0111
6	000110	0000110
5	000101	<mark>000</mark> 0101
4	000100	<mark>000</mark> 0100
3	000011	0000011
2	000010	0000010
1	000001	0000001
0	000000	0000000
-1		1111111
-2		1111110
-3		1111101
-4		1111100
-5		<mark>111</mark> 1011

- (Neutral prefix) For every $u \in \Sigma^*$, $val_{2c}(00u) = val_{2c}(0u)$ and $val_{2c}(11u) = val_{2c}(1u)$.
- For every n ∈ Z, there exists a unique word w ∈ Σ* \ (00Σ* ∪ 11Σ*) such that n = val_{2c}(w).
- For every n ∈ Z, we denote this unique word by rep_{2c}(n).

Fibonacci analog of two's complement

Let $\Sigma = \{0, 1\}$. Let $w = w_{k-1} \cdots w_0 \in \Sigma^*$ for some $k \in \mathbb{N}$.

$$\operatorname{val}_{\mathcal{F}}(w) = \sum_{i=0}^{k-1} w_i F_i$$
 $\operatorname{val}_{\mathcal{F}c}(w) = \operatorname{val}_{\mathcal{F}}(w) - \frac{w_{k-1}F_k}{w_k}$

n	$\operatorname{rep}_{\mathcal{F}}(n)$	$\operatorname{rep}_{\mathcal{F}c}(n)$
8	0010000	000010000
7	0001010	000001010
6	0001001	000001001
5	0001000	000001000
4	0000101	000000101
3	0000100	000000100
2	0000010	000000010
1	0000001	000000000
0	0000000	000000000
-1		101010101
-2		101010100
-3		101010010
-4		101010001
-5		101010000

 $F_0 = 1$, $F_1 = 2$ and $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 2$

- (Neutral prefix) For every $u \in \Sigma^*$, $\operatorname{val}_{\mathcal{F}_c}(000u) = \operatorname{val}_{\mathcal{F}_c}(0u)$ and $\operatorname{val}_{\mathcal{F}_c}(101u) = \operatorname{val}_{\mathcal{F}_c}(1u)$.
- For every n ∈ Z, there exists a unique odd-length word
 w ∈ Σ* \ (Σ*11Σ* ∪ 000Σ* ∪ 101Σ*)

such that $n = \operatorname{val}_{\mathcal{F}_{\mathcal{C}}}(w)$.

For every n ∈ Z, we denote this unique word by rep_{Fc}(n).

Fibonacci's complement num. system for \mathbb{Z}^2

Definition (Numeration system $\mathcal{F}c$ for \mathbb{Z}^2)

For
$$\boldsymbol{n} = (n_1, n_2) \in \mathbb{Z}^2$$
, we define

$$\operatorname{rep}_{\mathcal{FC}}(\boldsymbol{n}) = \operatorname{pad} \begin{pmatrix} \operatorname{rep}_{\mathcal{FC}}(n_1) \\ \operatorname{rep}_{\mathcal{FC}}(n_2) \end{pmatrix},$$

where pad padds the representation shorter in length with the **neutral prefix**.

For example :

$$\operatorname{rep}_{\mathcal{F}_{\mathcal{C}}} \begin{pmatrix} -1 \\ 6 \end{pmatrix} = \operatorname{pad} \begin{pmatrix} \operatorname{rep}_{\mathcal{F}_{\mathcal{C}}}(-1) \\ \operatorname{rep}_{\mathcal{F}_{\mathcal{C}}}(6) \end{pmatrix} = \operatorname{pad} \begin{pmatrix} 1 \\ 01001 \end{pmatrix} = \begin{pmatrix} 10101 \\ 01001 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

L., Lepšová. A Fibonacci analogue of the two's complement numeration system. RAIRO - Theoretical Informatics and Applications 57 (2023) 12.

Automaton associated with a 2-dim. substitution

If $\phi : A \to A^{*^2}$ is a 2-dim. substitution, we define the **directed graph**

$$\mathcal{A}_{\phi} = \left\{ a \xrightarrow{(i,j)} b \mid a \in A \text{ and } b \text{ is at position } (i,j) \text{ in } \phi(a) \right\}$$

						ł –		ł				
3	$^{6}_{36}$	$\begin{smallmatrix}&2\\6&1&3\\&2\end{smallmatrix}$	$\begin{smallmatrix}&&6\\3&7&3\\&4\end{smallmatrix}$	$\begin{smallmatrix}&6\\3&3&6\\&3\end{smallmatrix}$	$6^{2}_{113}_{2}$	- +3	+3 -	$\begin{smallmatrix}&6\\3&3&6\\3&3\end{smallmatrix}$	$\begin{smallmatrix}&2\\6&9&4\\1\end{smallmatrix}$	$\begin{smallmatrix}&3\\4&1&3\\4\end{smallmatrix}$	$\begin{smallmatrix}&6\\3&3&6\\&3\end{smallmatrix}$	$6\overset{2}{\overset{2}{\overset{1}{1}}}_{\overset{2}{2}}$
4	$\begin{smallmatrix}3\\1&3\\4\end{smallmatrix}$	$\begin{smallmatrix}&2\\3&8&5\\1\end{smallmatrix}$	$5\begin{smallmatrix}4\\2\\5\\5\end{smallmatrix}4$	$4 \begin{array}{c} 3 \\ 5 \\ 3 \end{array} 6$	$\begin{smallmatrix}&2\\6&9&4\\1\end{smallmatrix}$	-+2	+2 -	$\begin{smallmatrix}&3\\4&4&4\\5&4\end{smallmatrix}$	$\begin{smallmatrix}&1\\4105\\1\end{smallmatrix}$	$5\begin{smallmatrix}4\\2\\5\\5\end{smallmatrix}4$	$\begin{smallmatrix}&3\\4&1&3\\4\end{smallmatrix}$	$\begin{smallmatrix}&2\\3&8&5\\1\end{smallmatrix}$
1	$^{4}_{122}_{6}$	$\begin{smallmatrix}&1\\2&0&1\\&2\end{smallmatrix}$	$1\overset{5}{\overset{132}{3}}$	$\begin{smallmatrix}&3\\2142\\&6\end{smallmatrix}$	$\begin{smallmatrix}&1\\2&0&1\\&2\end{smallmatrix}$	- +1	+1 -	$1\overset{5}{\overset{132}{3}}$	$\begin{smallmatrix}&1\\2&0&1\\&2\end{smallmatrix}$	$\begin{smallmatrix}&5\\1151\\&4\end{smallmatrix}$	$\begin{smallmatrix}&4\\1&1&2\\&6\end{smallmatrix}$	$\begin{smallmatrix}&1\\2&0&1\\&2\end{smallmatrix}$
3	$\begin{smallmatrix}6\\3&6\\3\end{smallmatrix}$	$\begin{smallmatrix}&2\\6&9&4\\1\end{smallmatrix}$	$\begin{smallmatrix}&3\\4&1&3\\&4\end{smallmatrix}$	$\begin{smallmatrix}&6\\3&3&6\\3&6\end{smallmatrix}$	$\begin{smallmatrix}&2\\6&9&4\\1\end{smallmatrix}$	- +0	+0 -	$\begin{smallmatrix}&3\\4&1&3\\&4\end{smallmatrix}$	$\begin{smallmatrix}&2\\3&8&5\\1\end{smallmatrix}$	$\begin{smallmatrix}&4\\5&6&3\\&4\end{smallmatrix}$	$\begin{smallmatrix}&&6\\3&3&6\\&3\end{smallmatrix}$	$\begin{smallmatrix}&2\\6&9&4\\1\end{smallmatrix}$
-			1					1	1	1		
	-5	-4	-3	-2	-1			+0	$^{+1}$	+2	+3	+4
	-5	-4	-3	-2	-1			+0	+1	+2	+3	+4
	-5 -5	-4 -4	-3 -3	-2	-1			+0	+1	+2	+3	+4
4 2	-5 -5 142 6	-4 -4 1 2 0 1 2	-3 -3 1 1122 6	-2 -2 3 2142 6	-1 -1 2 0 1 2 0 1	1	-1 -	+0 +0 1122 6	+1 +1 $2 \stackrel{1}{0} 1$ 2	+2 +2 +1 1122 6	+3 +3 1 3 2142 6	+4 +4 $2 \frac{1}{201}$
 4 2 3 	-5 -5 142 6 3 6 3 6	-4 -4 2 0 1 2 6113 2	-3 -3 1 1 1 1 1 1 22 6 3 7 3 4	-2 -2 3 2142 6 3 3 3 6 3 3 6	-1 -1 2 0 1 2 6113 2	1 2	-1 - -2 -	+0 +0 1122 6 3 $\frac{4}{3}$ 6 3 $\frac{6}{3}$ 6	+1 +1 $2 \frac{1}{0} \frac{1}{2}$ 6113 2	+2 +2 1122 6 3 7 3 4	+3 +3 2142 6 336 336	+4 +4 2 0 1 2 6113 2
2 3 4	-5 -5 142 6 3 3 1 3 1 3 4	$\begin{array}{r} -4 \\ -4 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 6 \\ 1 \\ 3 \\ 2 \\ 3 \\ 8 \\ 5 \\ 1 \end{array}$	$\begin{array}{r} \textbf{-3} \\ \textbf{-3} \\ \textbf{1} \\ 1122 \\ \textbf{6} \\ \textbf{3} \\ \textbf{7} \\ \textbf{3} \\ \textbf{4} \\ \textbf{5} \\ \textbf{2} \\ \textbf{4} \\ \textbf{5} \\ \textbf{2} \\ \textbf{4} \end{array}$	-2 -2 3 2142 6 3 3634 5 63	$\begin{array}{c} -1 \\ -1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 6 \\ 1 \\ 3 \\ 2 \\ 6 \\ 9 \\ 4 \\ 1 \end{array}$	1 2 3	-1 - -2 - -3 -	+0 +0 $\frac{4}{1122}$ $\frac{6}{336}$ $\frac{3}{36}$ $\frac{3}{413}$	+1 +1 2012 61132 2 3851	$\begin{array}{r} +2 \\ +2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 6 \\ 3 \\ 7 \\ 3 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \end{array}$	+3 +3 $^{3}_{2142}$ $^{6}_{6}$ $^{3}_{3}$ $^{6}_{3}$ $^{3}_{4}$ $^{5}_{5}$ $^{6}_{3}$	$ \begin{array}{r} +4 \\ +4 \\ 1 \\ 2 \\ 0 \\ 1 \\ 2 \\ 6 \\ 1 \\ 3 \\ 2 \\ 6 \\ 9 \\ 4 \\ 1 \\ \end{array} $

25/47

A family $\{T_n\}_{n\geq 1}$ of metallic mean Wang tiles

- Ω_{T_n} related to the *n*-th metallic mean (pos. root of $x^2 nx 1$),
- structure associated with substitution $a \mapsto ab^n, b \mapsto ab^{n-1}$,
- related to the balanced representation of real numbers,

Metallic mean Wang tiles I : self-similarity, aperiodicity and minimality. arXiv:2312.03652

Metallic mean Wang tiles II : the dynamics of an aperiodic computer chip. arXiv:2403.03197

Outline

Motivation

2 Kari/Culik, Jeandel–Rao, Ammann sets of Wang tiles

3 A Fibonacci analog of two's complement numeration system

${f 40}$ Dumont–Thomas complement num. systems for ${\Bbb Z}$ and ${\Bbb Z}^d$

Open questions

Paths in a graph (automaton)

The graph $\mathcal{A}_{\eta,a}$ associated with $\eta : a \mapsto abc, b \mapsto c, c \mapsto ac$ is

The number of paths of length n starting from vertex a is

$$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

In particular, there are

$$(1111) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}^2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = (1111) \begin{pmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 6$$

paths of length 2 starting in vertex a.

Set of paths

The set of paths starting in state *a* in the directed graph :

Dumont–Thomas (1989)

Definition (admissible sequence)

Let $\eta : A^* \to A^*$ be a substitution. Let $a \in A$ be a letter, k an integer and, for each integer $i, 0 \le i \le k, (m_i, a_i)$ be an element of $A^* \times A$. We say that the finite sequence $(m_i, a_i)_{i=0,...,k}$ is **admissible with respect to** η if and only if, $m_{i-1}a_{i-1}$ is a prefix of $\eta(a_i)$ for all i with $1 \le i \le k$. We say that this sequence is *a*-admissible with respect to η if it is admissible with respect to η and, moreover, $m_k a_k$ is a prefix of $\eta(a)$.

J.-M. Dumont and A. Thomas. Systemes de numeration et fonctions fractales relatifs aux substitutions. Theoret. Comput. Sci., 65(2) :153–169, 1989.

Dumont–Thomas (1989)

Theorem (Dumont, Thomas, 1989)

Let $a \in A$ and let $\eta : A^* \to A^*$ be a substitution. Let $u = \eta(u)$ be a **right-infinite fixed point of** η with growing seed $u_0 = a$. For every integer $n \ge 1$, there exists a unique integer k = k(n) and a unique sequence $(m_i, a_i)_{i=0,...,k}$ such that

• this sequence is *a*-admissible and $m_k \neq \varepsilon$,

•
$$u_0 u_1 \cdots u_{n-1} = \eta^k(m_k) \eta^{k-1}(m_{k-1}) \cdots \eta^0(m_0).$$

This leads to a representation of $n \in \mathbb{N}$:

$$\operatorname{rep}(n) = |m_k| \odot |m_{k-1}| \odot \cdots \odot |m_0|$$

J.-M. Dumont and A. Thomas. Systemes de numeration et fonctions fractales relatifs aux substitutions. Theoret. Comput. Sci., 65(2) :153–169, 1989.

Dumont–Thomas for right-infinite periodic points

Theorem

Let $a \in A$ and $\eta : A^* \to A^*$ be a substitution. Let $u \in Per_{\mathbb{Z}_{\geq 0}}(\eta)$ be a right-infinite periodic point with growing seed $u_0 = a$. Let $p \ge 1$ be a period of u. For every integer $n \ge 1$, there exists a unique integer k = k(n)

such that *p* divides \overline{k} and **a unique sequence** $(m_i, a_i)_{i=0,...,k-1}$ such that

• this sequence is *a*-admissible and $m_{k-1}m_{k-2}\cdots m_{k-p} \neq \varepsilon$,

•
$$u_0 u_1 \cdots u_{n-1} = \eta^{k-1} (m_{k-1}) \eta^{k-2} (m_{k-2}) \cdots \eta^0 (m_0).$$

L., Lepšová. Dumont-Thomas complement numeration systems for Z. arXiv:2302.14481

Example rep : $\mathbb{Z}_{\geq 0} \rightarrow \{0, 1, 2\}^*$

The substitution $\eta : a \mapsto abc, b \mapsto c, c \mapsto ac$ has a **right-infinite** periodic point of period p = 1 (a fixed point) with growing seed a.

The **neutral prefix** is the minimal path of length *p* :

$$W_{\min} = 0^p = 0.$$

Dumont–Thomas for left-infinite periodic points

Theorem

Let $b \in A$ and $\eta : A^* \to A^*$ be a substitution. Let $u \in \operatorname{Per}_{\mathbb{Z}_{<0}}(\eta)$ be a left-infinite periodic point with growing seed $u_{-1} = b$. Let $p \ge 1$ be a period of u. For every integer $n \le -2$, there exists a unique integer k = k(n) such that p divides k and a unique sequence $(m_i, a_i)_{i=0,\dots,k-1}$ such that

this sequence is *b*-admissible and

$$\eta^{p-1}(m_{k-1})\eta^{p-2}(m_{k-2})\cdots \eta^0(m_{k-p})a_{k-p} \neq \eta^p(b),$$

•
$$u_{-|\eta^k(b)|}\cdots u_{n-2}u_{n-1} = \eta^{k-1}(m_{k-1})\eta^{k-2}(m_{k-2})\cdots \eta^0(m_0).$$

L., Lepšová. Dumont-Thomas complement numeration systems for Z. arXiv:2302.14481

Example rep : $\mathbb{Z}_{<0} \rightarrow \{0, 1, 2\}^*$

The substitution $\eta : a \mapsto abc, b \mapsto c, c \mapsto ac$ has a **left-infinite periodic point** of period p = 1 (a fixed point) with **growing seed** *c*.

n	path	rep(<i>n</i>)
-5	00	00
-4	01	01
-3	02	02
-2	10	0
-1	11	ε

The **neutral prefix** is the **maximal** path starting from *c* of length *p* :

 $W_{\text{max}} = 1.$

Dumont–Thomas complement NS for \mathbb{Z}

Definition

Let $\eta : A^* \to A^*$ be a substitution and $u \in Per(\eta)$ be a twosided periodic point with growing seed $u_{-1}|u_0$. Let $p \ge 1$ be the period of u. Let $\mathcal{D} = \{0, ..., \max_{c \in A} |\eta(c)| - 1\}$. We define

$$\operatorname{rep}_{u}: \mathbb{Z} \to \{0, 1\} \odot \mathcal{D}^{*}$$

$$n \mapsto \begin{cases} 0 \odot |m_{k-1}| \odot |m_{k-2}| \odot \ldots \odot |m_{0}| & \text{if } n \ge 1; \\ 0 & \text{if } n = 0; \\ 1 & \text{if } n = -1; \\ 1 \odot |m_{k-1}| \odot |m_{k-2}| \odot \ldots \odot |m_{0}| & \text{if } n \le -2, \end{cases}$$

where $k = k(n) \ge 0$ is the unique integer and $(m_i, a_i)_{i=0,...,k-1}$ is the unique sequence obtained from the previous theorems applied on the right-infinite periodic point $u|_{\mathbb{Z}_{\geq 0}}$ if $n \ge 1$ or on the left-infinite periodic point $u|_{\mathbb{Z}_{< 0}}$ if $n \le -2$, both with period p.

 \mathbb{T} L., Lepšová. Dumont-Thomas complement numeration systems for \mathbb{Z} .

Automatic characterization

Theorem Let $\eta : A^* \to A^*$ be a substitution and $u \in Per(\eta)$ be a two-sided periodic point with growing seed $s = u_{-1}|u_0$. Then for every $n \in \mathbb{Z}$ $u_n = \mathcal{A}_{n,s}(rep_u(n)).$

L., Lepšová. Dumont-Thomas complement numeration systems for Z. arXiv:2302.14481

A total order \prec on $\{0,1\} \odot \mathcal{D}^*$

The radix order $(L, <_{rad})$ and reversed-radix order $(L, <_{rev})$ on a language $L \subset D^*$ are total orders such that $u <_{rad} v$ if and only if |u| < |v| or |u| = |v| and $u <_{lex} v$,

 $u <_{rev} v$ if and only if |u| > |v| or |u| = |v| and $u <_{lex} v$.

Definition (total order \prec)

For every $u, v \in \{0, 1\}\mathcal{D}^*$, we define $u \prec v$ if and only if

•
$$u \in 1\mathcal{D}^*$$
 and $v \in 0\mathcal{D}^*$, or

•
$$u, v \in \mathcal{OD}^*$$
 and $u <_{rad} v$, or

• $u, v \in 1\mathcal{D}^*$ and $u <_{rev} v$.

Thus, if $\mathcal{D} = \{0, 1\}$, we get

Characterization of rep_u by the total order \prec

Theorem (L., Lepšová)

Let $\eta : A^* \to A^*$ be a substitution and $u \in Per(\eta)$ be a **two-sided periodic point** with growing seed $s = u_{-1}|u_0$. Let $p \ge 1$ be the period of u. Let $f : \mathbb{Z} \to \{0, 1\}\mathcal{D}^*$ be some map. Then

- *f* = rep_{*u*} if and only if
- *f* is **increasing** with respect to \prec , its **image** is

$$f(\mathbb{Z}) = \bigcup_{\ell \in \mathbb{N}} \mathcal{L}_{\ell p+1}(\mathcal{A}_{\eta,s}) \setminus \{ \emptyset W_{\min}, 1 W_{\max} \} \mathcal{D}^* \text{ and } f(0) = \emptyset.$$

We recover the two's complement and its Fibonacci analog :

Corollary

- Let ψ : A → A* be 2-uniform and let u ∈ Fix(ψ) be some two-sided fixed-point. Then rep_u = rep_{2c}.
- Let φ : a → ab, b → a and let v ∈ Per(φ) be the periodic point of period 2 with seed s = b|a. Then rep_v = rep_{Fc}.

Dumont–Thomas complement NS for \mathbb{Z}^d

Definition

Let $\eta : A^* \to A^*$ be a substitution and $u_1, u_2, \ldots, u_d \in Per(\eta)$ be **periodic points with growing seeds** and of the **same period**. For every $\boldsymbol{n} = (n_1, n_2, \ldots, n_d) \in \mathbb{Z}^d$, we define

$$\operatorname{rep}_{u}(\boldsymbol{n}) = \begin{pmatrix} \operatorname{pad}_{t}(\operatorname{rep}_{u_{1}}(n_{1})) \\ \operatorname{pad}_{t}(\operatorname{rep}_{u_{2}}(n_{2})) \\ \cdots \\ \operatorname{pad}_{t}(\operatorname{rep}_{u_{d}}(n_{d})) \end{pmatrix} \in \{0, 1\}^{d}(\mathcal{D}^{d})^{*},$$
where $t = \max\{|\operatorname{rep}_{u_{i}}(n_{i})|: 1 \leq i \leq d\}.$

L., Lepšová. Dumont-Thomas complement numeration systems for Z. arXiv:2302.14481

Example : Tribonacci

Substitution $\psi_T : a \mapsto ab, b \mapsto ac, c \mapsto a.$

Let $\tau \in Per(\psi_T)$ be the periodic point with period p = 3and seed c|a.

W _{min}	=	000	
W_{\max}	=	011	

n	$rep_{\tau}(n)$	$pad_7(rep_\tau(n))$
8	0001001	0001001
7	0001000	0001000
6	0110	0000110
5	0101	0000101
4	0100	0000100
3	0011	0000011
2	0010	0000010
1	0001	0000001
0	0	0000000
-1	1	1011011
-2	1010	1 <mark>011</mark> 010
-3	1001	1 <mark>011</mark> 001
-4	1000	1 <mark>011</mark> 000
-5	1010110	1010110

Thus, the coordinate $(-1,8) \in \mathbb{Z}^2$ can thus be written as a word

$$\operatorname{rep}_{\tau} \begin{pmatrix} -1 \\ 8 \end{pmatrix} = \begin{pmatrix} \operatorname{pad}_{7}(\operatorname{rep}_{\tau}(-1)) \\ \operatorname{pad}_{7}(\operatorname{rep}_{\tau}(8)) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

whose alphabet is the Cartesian product of $\{\emptyset,1\}$ with itself.

Outline

Motivation

- 2 Kari/Culik, Jeandel–Rao, Ammann sets of Wang tiles
- A Fibonacci analog of two's complement numeration system
- ${f 4}$ Dumont–Thomas complement num. systems for ${\Bbb Z}$ and ${\Bbb Z}^d$

5 Open questions

Open questions / future work

Question 1

Which Dumont-Thomas comp. num. syst. are positional?

Progress made in : SJana Lepšová, Ph.D. thesis, 2024.

Question 2 (Abstract complement numeration system)

Can we extend Abstract numeration system for \mathbb{N} and \mathbb{N}^d to \mathbb{Z} and \mathbb{Z}^d using the total order \prec on a language $\{0, 1\} \odot \mathcal{D}^*$?

Charlier, Kärki, Rigo. Multidimensional generalized automatic sequences and shape-symmetric morphic words. Discrete Mathematics 310 (2010) 1238-52.

Question 3 (Complement Bratteli–Vershik NS)

For **every Bratteli–Vershik diagram**, can we define a complement numeration system by representing -1 by some maximal path, and 0 by some minimal path in the diagram?

Open questions / future work

Bertrand-Mathis (1986)

The β -shift S_{β} is **sofic** if and only if β is a **Parry number**.

Question 4 : sofic toral \mathbb{Z}^2 -rotations

R

For which matrices $M \in \operatorname{GL}_2(\mathbb{R})$ does the \mathbb{Z}^2 -action

$$M: \mathbb{Z}^2 \times \mathbb{T}^2 \to \mathbb{T}^2$$

 $(\mathbf{k}, \mathbf{x}) \mapsto \mathbf{x} + M \mathbf{k}$

on the 2-dimensional torus $\mathbb{T}^2=(\mathbb{R}/\mathbb{Z})^2$ have a symbolic extension of finite type / sofic ?

YES : if $M = \beta$ where β is the *n*-th metallic mean number.

Metallic mean Wang tiles II : the dynamics of an aperiodic computer chip. arXiv:2403.03197

Question : find an example involving non-quadratic alg. numbers.

Open questions / future work

M/hat about			
What about	substitution	Fibonacci	Fibonacci
	images	(<i>ab</i> , <i>a</i>)	(<i>ab</i> , <i>a</i>)
$\dots + 89 + 34 + 13 + 5 + 2$	periodic point	γ	δ
1 2	seed	b a	aa
·	period	2	2
0	n	$\operatorname{rep}_{\gamma}(n)$	$rep_{\delta}(n)$
	8	0010000	0010000
odd/oven Eibenessi integere	7	01010	01010
odu/even Fibonacci integers	6	01001	01001
ls 1 an odd or even Fibo	5	01000	01000
	4	00101	00101
nacci integer?	3	00100	00100
	2	010	010
	1	001	001
Solution : define the	0	0	0
Dumont_Thomas complement	-1	1	1
Dunioni-monias complement	-2	100	101
numeration system by starting	-3	10010	100
with seed bla for describing the	-4	10001	10101
	-5	10000	10100
periodic point of seed $a a $ (we thus	-6	1001010	10010
aet even lengths words).	-7	1001001	10001
get et et in igune merde)	-8	1001000	10000